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Introduction

Model selection is a commonly used method to find sparsity or
parsimony of statistical models, but usually involves a
computationally heavy combinatorial search. Lasso (Tibshirani,
1996) is now being used as a computationally feasible alternative
to model selection.

In this paper, they prove that a single condition, which they call
the Irrepresentable Condition, is almost necessary and sufficient for
Lasso to select the true model both in the classical fixed p setting
and in the large p setting as the sample size n gets large.



Some previous results

I Knight and Fu(2000) have shown estimation consistency for
Lasso for fixed p and fixed βn

I Meinshausen and Buhlmann(2006) have shown that Lasso is
consistent in estimating the dependency between Gaussian
variables even when p grows faster than n

I Zhao and Yu(2006) have show model selection consistency for
both fixed p and large p problems



Definition

Suppose the linear regression model:

Yn = Xnβ
n + εn

Where, Yn is a n x 1 response vector,
Xn = (X n

1 ,X
n
2 , ...,X

n
p ) = ((x1)T , (x2)T , ..., (xn)T ) is a n x p design

matrix, βn is a p x 1 vector of model coefficients. εn is a i.i.d
random error variables with mean 0 and variance σ2

Lasso estimator is :

β̂n(λ) = argminβ(||Yn − Xnβ||22 + λ||β||1)

with λ ≥ 0



Notation

βn = (βn1 , β
n
2 , .., β

n
q , β

n
q+1, ..., β

n
p)T

Suppose, βnj 6= 0 for j=1,2,..,q and βnj =0 for j=q+1,...,p

βn(1) = (βn1 , ..., β
n
q), βn(2) = (βnq+1, ..., β

n
p)

Xn(1) = (X n
1 , ...,X

n
q ),Xn(2) = (X n

q+1, ...,X
n
p ),

Cn =
1

n
XT
n Xn =

(
Cn
11 Cn

12

Cn
21 Cn

22

)
where Cn

11 = 1
nXn(1)TXn(1), ...,Cn

22 = 1
nXn(2)TXn(2)



Definition of Consistency

I Estimation : β̂n − βn →p 0, as n→∞
I Model selection : P([i : β̂ni 6= 0] = [i : βni 6= 0])→p 1, as

n→∞
I Sign : P(β̂n =s β

n)→p 1, as n→∞, where
β̂n =s β

n ⇔ sign(β̂n) = sign(βn)



Definition 1

Strongly Sign Consistent

Lasso is Strongly Sign Consistent if ∃λn = f (n) such that
limn→∞ P(β̂n(λn) =s β

n) = 1

General Sign Consistent

Lasso is General Sign Consistent if
limn→∞ P(∃λ ≥ 0, β̂n(λn) =s β

n) = 1



Definition 2

Strong Irrepresentable Condition

∃η > 0, such that |Cn
21(Cn

11)−1sign(βn(1))| ≤ 1− η

Weak Irrepresentable Condition

|Cn
21(Cn

11)−1sign(βn(1))| < 1



Result-Small p and q

Classical setting: p,q and βn are all fixed as n→∞

Suppose the following regularity conditions:
Cn → C > 0, as n→∞
1
nmax1≤i≤n((xni )T xni )→ 0, n→∞



Result-Small p and q

Theorem 1
For fixed p,q and βn = β, under the previous assumptions, Lasso is
strongly sign consistent if Strong Irrepresentable Condition holds.
That is, when Strong Irrepresentable Condition holds, ∀λn that
satisfies λn

n → 0 and λn

n
1+c
n
→∞ with 0 ≤ c < 1, we have

P(β̂n(λn) =s β
n) = 1− o(e−n

c
)



Result-Small p and q

Theorem 2
For fixed p,q and βn = β, under the previous assumptions, Lasso is
general sign consistent only if there exists N so that Weak
Irrepresentable Condition holds for n >N



Result-Small p and q

Therefore, Strong Irrepresentable Condition implies strong sign
consistency implies general sign consistency implies Weak
Irrepresentable Condition. So except for the technical difference
between the two conditions, Irrepresentable Condition is almost
necessary and sufficient for both strong sign consistency and
general sign consistency.



Result-Large p and q

Furthermore, under additional regularity conditions on the noise
terms εni , this small p result can be extended to the large p case.
That is, when p also tends to infinity not too fast as n tends to
infinity, we show that Strong Irrepresentable Condition, again,
implies Strong Sign Consistency for Lasso.



Result-Large p and q

The dimension of the designs Cn and parameters βn grow as n
grows, then pn and qn are allowed to grow with n

Suppose the following conditions: ∃0 ≤ c1 < c2 ≤ 1 and
M1,M2,M3,M4 > 0,
1
n (X n

i )TX n
i ≤ M1, for ∀i , αTCn

11α ≥ M2, for ∀ ||α||22 = 1
qn = O(nc1),

n
1−c2

2 ,mini=1,2,..,q|βni | ≥ M3



Result-Large p and q

Theorem 3
Assume εni are i.i.d. random variable with E(εni )2k <∞ for an
integer k >0. Under the previous conditions, Strong
Irrepresentable Condition implies that Lasso has strong sign
consistency for pn = o(n(c2−c1)k). In particular, for ∀λn that
satisfies, λn√

n
= o(n(c2−c1)/2) and 1

pn
( λn√

n
)2k →∞, we have

P(β̂n(λn) =s β
n) ≥ 1− O(pnn

k

λ2k
)→ 1 as n→∞



Result-Large p and q

Theorem 4
Assume εni are i.i.d. Gaussian random variables. Under the previous
conditions, if there exists 0 < c3 < c2 − c1 for which pn = O(en

c3 ),
then Strong Irrepresentable Condisions implies that Lasso has

strong sign consistency. In particular, for λn ∝ n
1+c4
2 withc3 < c4 <

c2 − c1,P(β̂n(λn) =s β
n) ≥ 1− o(en

c3 )→ 1 as n→∞



Discussions

In this paper, they have provided Strong and Weak Irrepresentable
Conditions that are almost necessary and sufficient for model
selection consistency of Lasso under both small p and large p
settings. Although much of Lasso’s strength lies in its finite sample
performance which is not the focus here, their asymptotic results
offer insights and guidance to applications of Lasso as a feature
selection tool, assuming that the typical regularity conditions are
satisfied on the design matrix as in Knight and Fu (2000)
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The End


